Seafood nutrients and antiviral immunity

Philip Calder Professor of Nutritional Immunology University of Southampton Southampton United Kingdom

September 17, 2020

- Introduction to the immune system including antiviral defence
- Overview of nutrition and immunity (brief)
- Specific micronutrients (vitamin D, zinc, selenium) and (anti-viral) immunity
- Summary & conclusions

The immune system is a cell and tissue system that protects the individual from invading pathogens

Bacteria

the second second

Fungi

A well functioning immune system is key to providing robust defence against pathogenic organisms

The immune system involves many cell types – each has their own role

The four general functional features of the immune system

- Exclusion barrier
- Recognition/Identification
- Elimination
- Memory

Interaction amongst immune cells

Anti-viral immunity

Calder (2020) BMJ Nutrition Prevention & Heath 3, e000085

Amongst key nutrients for antiviral immunity are:

Vitamin D

 important sources: fatty fish; fish oil supplements

Zn

important sources: seafood [oysters, crabs, lobster, fish]

Se

 important sources: seafood [oysters, crabs, shrimps, fatty fish]

Prietl et al. (2013) Nutrients 5, 2502-2521

Vitamin D status has a linear association with seasonal infections and lung function in British adults

Diane J. Berry, Kathryn Hesketh, Chris Power and Elina Hyppönen*

British Journal of Nutrition (2011), 106, 1433-1440

But just an association: no "cause and effect"

PLOS ONE

Vitamin D and Respiratory Tract Infections: A Systematic **Review and Meta-Analysis of Randomized Controlled** Trials

Peter Bergman^{1,2}, Åsa U. Lindh³, Linda Björkhem-Bergman⁴, Jonatan D. Lindh⁴*

June 2013 | Volume 8 | Issue 6 | e65835

40 IU = 1 μ g

	Study	Odds Ratio	OR	95%-CI	W(random)
12 trials	Bias risk = High Aloia - Jorde		0.25 0.93	[0.11; 0.58] [0.52; 1.64]	6.1% 9.0%
Adults or	Summary Heterogeneity: I-squared=84.1%, Q=6.3,	df=1, p=0.0122	0.50	[0.14; 1.80]	15.1%
children	Bias risk = Low Bergman Camargo		0.48	[0.25; 0.91] [0.31: 0.79]	8.1% 10.5%
Dose: 300	Laaksi Li-Ng		0.67	[0.38; 1.17] [0.41; 1.54]	9.2% 7.9%
to 3653	Manaseki-Holland 2010 Manaseki-Holland 2012		0.24 0.60 1.04	[0.00; 0.90] [0.41; 0.88] [0.92; 1.19]	11.5% 14.6%
IU/day	Murdoch Urashima Summary Hatarogenaity: hsquared=70.6%_0=27	2 df=8 p=0.0007	0.92 0.53 0.67	[0.62; 1.37] [0.28; 0.99] [0.50; 0.88]	11.4% 8.4% 84.9%
7 wk to 3 yr	Summary Heterogeneity: I-squared=72%, Q=35.7.	df=10. p<0.0001	0.64	[0.49; 0.84]	100%
	0.1	0.5 1 2	10		

Figure 2. Efficacy of vitamin D for prevention of respiratory tract infections. Error bars indicate 95% confidence intervals.

Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data

Adrian R Martineau,^{1,2} David A Jolliffe,¹ Richard L Hooper,¹ Lauren Greenberg,¹ John F Aloia,³ Peter Bergman,⁴ Gal Dubnov-Raz,⁵ Susanna Esposito,⁶ Davaasambuu Ganmaa,⁷ Adit A Ginde,⁸ Emma C Goodall,⁹ Cameron C Grant,¹⁰ Christopher J Griffiths,^{1,2,11} Wim Janssens,¹² Ilkka Laaksi,¹³ Semira Manaseki-Holland,¹⁴ David Mauger,¹⁵ David R Murdoch,¹⁶ Rachel Neale,¹⁷ Judy R Rees,¹⁸ Steve Simpson,Jr¹⁹ Iwona Stelmach,²⁰ Geeta Trilok Kumar,²¹ Mitsuyoshi Urashima,²² Carlos A Camargo Jr²³

- 25 trials
- N = 11,321
- Adults or children
- Different approaches to dosing (daily, weekly, bolus, bolus then weekly or daily)
- Studies with daily dosing used 7.5 to 100 $\mu\text{g}/\text{day}$

	Proportion w	vith ≥1 ARTI (%)			
Study	Control	Intervention	Adjusted odds ratio (95% CI)	Weight (%)	Adjusted odds ratio (95% CI)
Li-Ng 2009	33/76 (43.4)	32/81 (39.5)		3.48	0.85 (0.44 to 1.64)
Urashima 2010	69/167 (41.3)	68/167 (40.7)		5.36	0.90 (0.58 to 1.41)
Manaseki-Holland 2010	126/229 (55.0)	97/224 (43.3)		6.12	0.60 (0.41 to 0.88)
Laaksi 2010	54/84 (64.3)	39/80 (48.8)		3.58	0.51 (0.27 to 0.96)
Majak 2011	11/24 (45.8)	4/24 (16.7)		1.00	0.20 (0.05 to 0.82)
Trilok-Kumar 2011	458/1030 (44.5)	438/1034 (42.4)		8.69	0.92 (0.77 to 1.11)
Lehouck 2012	29/89 (32.6)	30/86 (34.9)		3.57	1.00 (0.53 to 1.90)
Manaseki-Holland 2012	245/1505 (16.3)	260/1506 (17.3)		8.58	1.08 (0.89 to 1.30)
Camargo 2012	53/103 (51.5)	44/141 (31.2)	T	4.36	0.38 (0.22 to 0.65)
Murdoch 2012	155/161 (96.3)	154/161 (95.7)		1.43	0.97 (0.30 to 3.15)
Bergman 2012	39/62 (62.9)	26/62 (41.9)		2.89	0.42 (0.20 to 0.89)
Marchisio 2013	38/58 (65.5)	26/58 (44.8)		2.84	0.44 (0.21 to 0.95)
Rees 2013	276/360 (76.7)	303/399 (75.9)	÷.	6.35	1.03 (0.72 to 1.49)
Tran 2014	96/197 (48.7)	185/397 (46.6)		6.60	0.92 (0.65 to 1.30)
Goodall 2014	80/234 (34.2)	70/258 (27.1)		5.94	0.66 (0.45 to 0.98)
Urashima 2014	17/99 (17.2)	32/148 (21.6)	· · · · · · · · · · · · · · · · · · ·	3.41	1.43 (0.73 to 2.78)
Grant 2014	53/80 (66.3)	94/156 (60.3)		4.12	0.77 (0.43 to 1.36)
Martineau 2015 (ViDiCO)	75/118 (63.6)	76/122 (62.3)		3.98	0.87 (0.48 to 1.57)
Martineau 2015 (ViDiAs)	93/125 (74.4)	85/125 (68.0)		3.74	0.71 (0.38 to 1.31)
Martineau 2015 (ViDiFlu)	58/103 (56.3)	83/137 (60.6)		4.38	1.13 (0.66 to 1.95)
Dubnov-Raz 2015	10/11 (90.9)	10/14 (71.4)		0.28	0.23 (0.01 to 3.82)
Denlinger 2016	93/207 (44.9)	110/201 (54.7)		5.86	1.52 (1.02 to 2.28)
Tachimoto 2016	5/35 (14.3)	4/54 (7.4)	←	1.01	0.45 (0.11 to 1.89)
Ginde 2016	24/52 (46.2)	17/55 (30.9)		2.44	0.44 (0.19 to 1.02)
Simpson 2015	14/14 (87 E)	14/18 (88.0)		0.00	Excluded
Overall: I ² =53.3%, P=0.001			+	100.00	0.80 (0.69 to 0.93)
Note: Weights are from rand	lom effects analysis	0.	125 0.25 0.5 1 2 4	Ì	

CONCLUSIONS

Vitamin D supplementation was safe and it protected against acute respiratory tract infection overall. Patients who were very vitamin D deficient and those not receiving bolus doses experienced the most benefit.

SHORT COMMUNICATION

The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality

Petre Cristian Ilie¹ · Simina Stefanescu² · Lee Smith³

Association – not cause & effect

Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study

Eugene Merzon^{1,2*}, Dmitry Tworowski³, Alessandro Gorohovski³, Shlomo Vinker^{1,2}, Avivit Golan Cohen^{1,2}, Ilan Green^{1,2}, Milana Frenkel Morgenstern³*

FEBS J. (2020) in press

Table 4: Multivariate logistic regression analysis of the odds ratio for infection with COVID-19, controlling for multiple conditions

Variable	Crude OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Low vitamin D level**	1.58(1.24- 2.01)	0.001	1.50(1.13-1.98)	0.001
Age over 50 years	1.51(1.21 1.89)	0.001	1.56(1.26-1.92)	0.001
Male	1.42(1.23-1.65)	0.001	1.49(1.24-1.79)	0.001
Low-medium- SES	2.45(1.99-3.01)	0.001	2.13(1.69-2.68)	0.001

Table 5: Multivariate logistic regression analysis of the odds ratio for hospitalization of patients with COVID-19, controlling for multiple clinical conditions.

Variable	Crude OR (95% CI)	P value	Adjusted OR (95% CI) *	P value
Low vitamin D level	2.09(1.01-4.31)	0.021	1.95(0.99-4.78)	0.056
Age over 50 years	2.51(1.21-4.89)	0.001	2.71(1.55; 4.78)	0.002

Vitamin D

Zn

Se

Zinc as a Gatekeeper of Immune Function

ZINC DEFICIENCY

- overproduction of proinflammatory cytokines & reactive mediators
- Thymus atrophy
- T_H1/T_H2 dysbalance
- less naive B cells
- less T_{reg}
- more T_H17

ZINC HOMEOSTASIS

- balanced immune cell numbers & functions
- balance between tolerance and defense mechanisms

ZINC EXCESS

- suppression of T & B cell function
- overload of T_{reg}
- direct activation of macrophages

Zinc concentration

Wessels et al. (2017) Nutrients 9, 1286

Am J Med 1981;70:1001-4.

Beneficial effects of oral zinc supplementation on the immune response of old people

Duchateau J, Delepesse G, Vrijens R, Collet H.

Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: a randomized, double-blind, placebo-controlled trial¹

Junaidah B Barnett,² Maria C Dao,² Davidson H Hamer,^{2,3,5} Ruth Kandel,^{6,7} Gary Brandeis,⁴ Dayong Wu,² Gerard E Dallal,² Paul F Jacques,² Robert Schreiber,^{6,7} Eunhee Kong,² and Simin N Meydani²*

Am J Clin Nutr 2016;103:942-51.

- 30 mg/day
- 3 months
- > 65 y
- Low zinc status

Zinc decreases risk of mortality in people with severe pneumonia

Study or Subaroup	zinc Events	Total	placel Events	oo Total	Weight	Risk Ratio M-H, Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl	l
Sempertegui 2014	1	220	3	221	10.7%	0.33 [0.04, 3.19]		
Srinivasan 2012	7	176	21	176	75.0%	0.33 [0.15, 0.76]		
Wadhwa 2013	4	262	4	263	14.3%	1.00 [0.25, 3.97]		
Total (95% CI)		658		660	100.0%	0.43 [0.22, 0.83]	•	
Total events	12		28					
Heterogeneity: Chi ² = '	.87, df = 2	2 (P = ().39); l ² =	0%				100
Test for overall effect:	Z = 2.51 (I	P = 0.0	1)				Favours zinc Favours p	placebo

Efficacy of zinc on mortality caused by severe pneumonia.

Wang & Song (2018) Clin. Resp. J. 12, 857-864

Zinc inhibits the activity of an enzyme vital to viral replication (RNA dependent RNA polymerase)

The Role of Zinc in Antiviral Immunity

Scott A Read,^{1,2} Stephanie Obeid,³ Chantelle Ahlenstiel,³ and Golo Ahlenstiel^{1,2} *Adv Nutr* 2019;10:696–710.

Vitamin D

Zn

Se

Review

Selenium, Selenoproteins, and Immunity

Joseph C. Avery 💿 and Peter R. Hoffmann *

Nutrients 2018, 10, 1203; doi:10.3390/nu10091203

Figure 1. A summary of selenium and immune responses.

Extensive research in <u>mice</u> has shown that selenium deficiency:

- Impairs immune responses
- Increases susceptibility to viral infection
- Permits viruses to mutate (including influenza viruses)
- Allows normally weak viruses to become more virulent

An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status^{1–3}

Caroline S Broome, Francis McArdle, Janet AM Kyle, Francis Andrews, Nicola M Lowe, C Anthony Hart, John R Arthur, and Malcolm J Jackson

Am J Clin Nutr 2004;80:154-62.]

Selenium increases T cell function in response to polio virus And increases IFN-γ production Number of subjects with poliovirus in feces 7, 14, and 21 d after polio vaccination and after supplementation with 50 or 100 μ g Se or placebo^I

Time after polio vaccination	Placebo $(n = 20)$	$50 \ \mu g \ Se/d$ $(n = 20)$	100 µg Se/d (n = 20)
7 d	19	14 ²	10 ²
14 d	19	10^{2}	10 ²
21 d	14 ²	9 ²	7^{2}

¹ Data were analyzed by using Friedman's test. P for interaction of treatment and day = 0.0001.

² Significantly different from placebo, P < 0.001.

Se decreases appearance of (oral) polio virus in faeces

=> Se results in better clearance of virus

Fewer mutant viral sequences in faeces

=> Se prevents viral mutations in humans

Association between regional selenium status and reported outcome of COVID-19 cases in China

Jinsong Zhang Ethan Will Taylor Kate Bennett Ramy Saad Margaret P Rayman

FIGURE 1 Correlation between COVID-19 cure rate in 17 cities outside Hubei, China, on 18 February, 2020 and city population selenium status (hair selenium concentration) analyzed using weighted linear regression (mean \pm SD = 35.5 \pm 11.1, R^2 = 0.72, *F* test *P* < 0.0001). Each data point represents the cure rate, calculated as the number of cured patients divided by the number of confirmed cases, expressed as a percentage. The size of the marker is proportional to the number of cases.

Am. J. Clin. Nutr. (2020) 111, 1297-1299

Selenium Deficiency Is Associated with Mortality Risk from COVID-19

Arash Moghaddam¹, Raban Arved Heller^{2,3}, Qian Sun³, Julian Seelig³, Asan Cherkezov¹, Linda Seibert¹, Julian Hackler³, Petra Seemann³, Joachim Diegmann¹, Maximilian Pilz⁴, Manuel Bachmann¹, Waldemar B. Minich³ and Lutz Schomburg^{3,*}

Nutrients (2020) 12, 2098

Summary

- The immune system is central to protection against infection -> it is complex & there are specific ways in which it deals with viruses
- Multiple nutrients play important roles in supporting the immune system – these include vitamin D, zinc & selenium
- Vitamin D is important in protecting against (viral) respiratory illness
- Zinc seems to have special roles in anti-viral immunity
- Selenium also seems to be important and is often overlooked

Conclusions

- Nothing people can eat will STOP them getting infected (with coronavirus)
- Good immune defence is vital to combatting infections including with viruses like SARS-CoV2
- Vitamin D, zinc and selenium are all important in supporting the immune system and contribute to anti-viral immunity
- Seafood is an excellent source of vitamin D, zinc and selenium and its consumption should be encouraged through healthy eating messages

Eat fish!!

Omega-3 fatty acids & cytokine storm :

Coronavirus infection of respiratory epithelium

Lung damage

Immune infiltrate

Inflammatory response

Becomes excessive Fluid leakage from bloodstream into alveoli

Poor oxygen delivery

Cytokine storm

ARDS

Requirement for ventilation

Other organ failures

Death

Calder (2020) Marine Drugs 17, 274

Calder (2020) Marine Drugs 17, 274

Cochrane Database of Systematic Reviews

Rich in EPA and DHA (+ other nutrients)

Immunonutrition for acute respiratory distress syndrome (ARDS) in adults (Review)

Dushianthan A, Cusack R, Burgess VA, Grocott MPW, Calder PC

Dushianthan A, Cusack R, Burgess VA, Grocott MPW, Calder PC. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. *Cochrane Database of Systematic Reviews* 2019, Issue 1. Art. No.: CD012041. DOI: 10.1002/14651858.CD012041.pub2.

www.cochranelibrary.com

Outcome	Effect	95% CI	Ρ
28 day mortality	0.64	0.49, 0.84	0.0015
ICU LOS (days)	-3.09	-5.19, -0.99	0.004
Ventilator days	-2.24	-3.77, -0.71	0.0042
PaO2/FiO2 at d4	38.88	10.75, 67.02	0.0068
PaO2/FiO2 at d8	23.44	1.73, 45.15	0.034
New organ failure	0.45	0.32, 0.63	< 0.00001

From Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA