Dr. Susan Carlson

AJ Rice Professor of Nutrition Department of Dietetics and Nutrition University of Kansas Medical Center

A CONSEQUENCE OF THE DHA INTAKE GAP IN US PREGNANCIES:

Preterm Birth

US Dietary DHA Intake Is Low

	Recommended Daily DHA Intake*	Average Daily DHA Intake
Pregnant/ Lactating Women	300 mg	54 mg
Adult Women	220 mg	61 mg
Adult Men	220 mg	78 mg

*Expert panel convened by NIH/ISSFAL. Simopoulos AP, et al. *J Am Coll Nutr*. 1999;18:487-489. Benisek D, et al. *J Am Coll Nutr*. 1999;18:543-544. Benisek D, et al. *Obstet Gynecol*. 2000;95:77S-78S.

AAP AND AMA ADVOCACY FOR IMPROVING NUTRITION IN THE FIRST 1000 DAYS TO SUPPORT CHILDHOOD DEVELOPMENT AND ADULT HEALTH

Prenatal maternal nutrition during first 1000 days includes:

- Protein
- Zinc*
- Iron*
- Choline*
- Folate*
- Copper*
- Iodine*
- Vitamins A, D, B₆, and B₁₂
- Long-chain polyunsaturated fatty acids (DHA)*

Supported by

- American Medical Association (AMA)
- American Pregnancy Association (APA)
- Academy of Nutrition and Dietetics

http://americanpregnancy.org/pregnancy-health/prenatal-vitamin-ingredients/ Schwarzenberg et.al., Pediatrics. 2018 Feb;141(2)

https://www.ama-assn.org/delivering-care/public-health/ama-backs-global-health-experts-calling-infertility-disease https://iandonline.org/article/S2212-2672(14)00501-2/pdf

Schwarzenberg and Georgieff, Pediatrics 2018; 141/Issue 2 From the American Academy of Pediatrics, Policy Statement

NO OFFICIAL US REQUIREMENT FOR DHA

- Biochemical pathway to synthesize
- National Academy of Medicine does not recognize DHA as an essential nutrient at any stage of the life cycle

DHA Dietary Sources: Fatty Fish, Meat, Eggs

Food	DHA (mg)
3 oz pink salmon filet, baked/broiled	638
3 oz white tuna, canned in water	535
3 oz smoked salmon (lox)	227
3 oz crab, steamed	196
12 large shrimp, steamed	96
3 oz tuna salad	47
2 pieces chicken, fried	37
1 large egg, hard-boiled	19

US Department of Agriculture, Agriculture Research Service. 2003. USDA Nutrient Database for Standard Reference, Release 16. Nutrient Data Laboratory. Available at: http://www.nal.usda.gov/fnic/foodcomp. Accessed February 9, 2004.

DHA and Mercury Levels in Selected Fish and Shellfish

1. http://fda.gov/bbs/topics/NEWS/2006/NEW01382.html. Accessed May 8, 2007; 2. http://www.cfsan.fda.gov/~dms/admehg3.html. Accessed May 8, 2007; 3. EPA *Mercury Levels in Commercial Fish and Shellfish.* www.cfsan.fda.gov/~frf/sea-mehg.html. Accessed February 28, 2007; 4. Institute of Medicine. http://www.iom.edu/CMS/3788/23788/37679/37686.aspx. Accessed February 20, 2007; 5. USDA *National Nutrient Database.* www.ars.usda.gov/ba/bhnrc/ndl. Accessed February 28, 2007. © 2007 MJ & Co.

First Studies to Suggest Omega-3 LCPUFA Reduce Early Preterm Birth (<34 weeks gestation)

Trial	N	DHA / EPA (g)	Subject selection	Delivery < 34 wks (Cont vs. Supp)
Bulstra- Ramakers 1994	64	0 / 3.0	IUGR +/- PIH in a previous pregnancy	19.3 vs. 9.4
Olsen 2000	797	0.9 / 1.3	Twins, preterm delivery, IUGR, PIH in a previous pregnancy	14.9 vs. 10.6
Makrides 2010	2399	0.8 / 0.1	Healthy women carrying singleton	2.25 vs. 1.09
Carlson 2013	301	0.6 / 0	Healthy women carrying singleton	4.8 vs. 0.6

KUDOS: Very Low Birth Weight & Hospitalization (Placebo, n=147; DHA, n=154)

	Placebo	DHA 600 mg	P-value
Early preterm birth (<34 wks)*	4.8 %	0.6 %	P=0.025
Birth weight <1500 g*	3.4 %	0 %	P=0.026
Neonatal Intensive Care Unit admission	8.3%	10.4%	NS
Days hospitalized (mean #)**	40.8	8.9	P=0.026

*One tailed P values at α =0.05; **if born <37 wks Carlson et al., AJCN 2013

Public Health Significance

Evidence from KUDOS Trial (600 mg/d DHA)

- Savings of \$1,652 / dyad with DHA supplementation
- Possible savings to US of up to \$6 billion for hospitalization costs alone with universal supplementation

Shireman et al., PLEFA 2016

Correlation of Female Omega-3 LCPUFA Intake and Preterm Birth in 184 Countries: Benefits Found Up to 600 mg/d

Ciesielski TH, Bartlett J and Williams SM: BMJ Open 2019;9:e027249

How Much Omega-3 Supplementation is Needed to Reduce Early Preterm Birth? Weekly Capsule Intake (200 mg DHA/capsule)

Carlson et al., PLEFA 2018

OMEGA-3 FATTY ACIDS SUPPLEMENTATION DURING PREGNANCY: WHAT IS THE EVIDENCE FOR BENEFIT?

State of the art evidence from the November 2018 Cochrane Review

70 RCTs involving 19,927 women

Compared omega-3 interventions (supplements or food) with placebo

Middleton et al., Omega-3 fatty acid supplementation during pregnancy, Cochrane Review 2018

PRETERM BIRTH: OMEGA-3 VS NONE

<37 weeks: 27 RCTs, 10,304 participants

High quality evidence for an 11% reduction*

<34 weeks: 9 RCTs, 5204 participants

High quality evidence for a 42% reduction

Middleton et al., Omega-3 fatty acid supplementation during pregnancy, Cochrane Review 2018

OTHER EFFECTS OF OMEGA-3 FATTY ACID INTAKE ON PREGNANCY OUTCOME

Low birth weight (<2500 g)

15 RCT, 8449 participants

High quality evidence for a 10% reduction

Makrides 2018: ORIP (n=5544), NEJM Sept 2019

Carlson 2018: Recruiting for ADORE 200 vs 1000 mg (n=950 of 1250)

10 RCTs, 7026 participants

Moderate quality evidence for a 25% reduction

NICU admissions:

- 9 RCTs, 6920 participants.
- Moderate quality evidence for an 8% reduction

Middleton et al., Omega-3 fatty acid supplementation during pregnancy, Cochrane Review 2018

Pregnancy RBC PL DHA at Baseline

SUMMARY

- •Very low DHA intakes are associated with an increased risk of the most costly and devastating early births those before 34 weeks gestation
- The 2018 Cochrane Review demonstrates strong evidence for increasing DHA intake to reduce preterm birth with most benefit for births before 34 weeks gestation
- The authors suggest a need for >500 mg/day based on their analysis of the literature
- •A trial reported last week in NEJM found a 16% decrease in preterm birth (<37 weeks), but no decrease in birth before 34 weeks
- •Does not refute the Cochrane Review finding that DHA can reduce early preterm and preterm birth
- •DHA is a nutrient, and prenatal supplements containing DHA are now widely used in both the US and Australis such that women may be entering pregnancy with improved DHA status compared to 2006